Wind power prediction risk indices based on numerical weather prediction ensembles

نویسندگان

  • Erik Holmgren
  • Nils Siebert
چکیده

The large-scale integration of wind generation imposes several difficulties in the management of power systems. Wind power forecasting up to a few days ahead contributes to a secure and economic power system operation. Prediction models of today are mainly focused on spot or probabilistic predictions of wind power. However, in many applications, endusers require additional tools for the on-line estimation of the uncertainty of the predictions. One solution to this is prediction risk indices, computed on wind power forecast ensembles derived from numerical weather prediction ensembles. This paper investigates the usefulness of such risk indices as a complement to usual wind power forecasts for informing on the expected level of uncertainty and the risk for large forecast errors. Results show that risk indices are useful to extract information from power ensembles and can give valuable information about the expected prediction uncertainty.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wind Power Prediction by using Ensemble Models

We compare structural different methods of the artificial intelligence for wind power prediction modeling and build additionally ensembles of the models. As input variables for these prediction methods weather data of a numerical weather prediction model are used. The performance of the presented methods is compared to the predictions of the neural network based model.

متن کامل

Wind power prediction with different artificial intelligence models

In this paper different prediction models based on methods of the artificial intelligence are studied for wind power prediction of single wind farms. The used methods are neural networks, mixture of experts, support vector machines and nearest neighbour search with a superior particle swarm optimization. We build for day-ahead prediction and for short-term prediction with a prediction horizon o...

متن کامل

Skill forecasting from different wind power ensemble prediction methods

This paper presents an investigation on alternative approaches to the providing of uncertainty estimates associated to point predictions of wind generation. Focus is given to skill forecasts in the form of prediction risk indices, aiming at giving a comprehensive signal on the expected level of forecast uncertainty. Ensemble predictions of wind generation are used as input. A proposal for the d...

متن کامل

Wind Power Prediction with Machine Learning Ensembles

For a sustainable integration of wind power into the electricity grid, precise and robust predictions are required. With increasing installed capacity and changing energy markets, there is a growing demand for short-term predictions. Machine learning methods can be used as a purely data-driven, spatio-temporal prediction model that yields better results than traditional physical models based on...

متن کامل

Wind Power Forecasting using Fuzzy Neural Networks Enhanced with On-line Prediction Risk Assessment

Absfrad-The paper presents an advanced wind forecasting system that uses on-line SCAnA measurements, as well as numerical weather predictions (NWP) as input, to predict the power production of wind park8 48 hours ahead. The prediction system integrates models based on adaptive fuzzy-neural networks configured either for short-term (1-10 hours) or longterm (1-48 hours) forecasting. The paper pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012